Very Short-Lived Species				
5-01	5-01_Grooß	124 Jens-Uwe	Grooß	Construction of VSLS surface emissions from aircraft observations
5-02	5-02_Atlas	236 Elliot	Atlas	Ozone depleting substances measured in outflow to the Western Pacific UT/LS during the ACCLIP mission
5-03	5-03_Salawitch	207 Ross	Salawitch	Quantification of the Impact of Very Short Lived Chlorine Compounds on Stratospheric Chlorine
5-04	5-04_Liang	228 Qing	Liang	The Impact of Very-Short-Lived Chlorocarbons on Stratospheric Chlorine and Ozone Abundance during 2011-2022
5-05	5-05_Hintsa	204 Eric	Hintsa	Halocarbons in the Lower Stratosphere over North America: Measurements and Analysis from the NASA DCOTSS mission
Stratospheric Water Vapor and Ozone Depleting Substances				
5-06	5-06_Toohey	321 Darin	Toohey	A New Lightweight, Economical Laser Hygrometer for In Situ Measurements of Water Vapor in the Stratosphere
5-07	5-07_Toso	96 Lavinia	Toso	$Evaluation \ of stratospheric \ BrO\ abundances \ to\ infer\ the\ trend\ of\ total\ bromine\ in\ the\ winter\ polar\ vortices\ from\ 1987\ to\ 2000$
5-08	5-08_Bazhenov	107 Oleg	Bazhenov	Effect of Chlorine Oxide on Ozone Destruction in the Winter-Spring Arctic Stratosphere Using Aura MLS Observations
5-09	5-09_Ayassou	5 Koffi	Ayassou	Trend of anthropic emissions of ozone depleting substances (ODS) and their substitutes in Togo from 1995-2018
5-10	5-10_Ayassou	6 Koffi	Ayassou	Simulation of the impact of hydrofluorocarbon (HFC) emissions in Togo on global average temperature
Protecting the Ozone Layer				
5-11	5-11_Andersen	64 Stephen O.	Andersen	Why and How Industry Used Atmospheric Science to Protect the Stratospheric Ozone Layer and Climate
5-12	5-12_Velders	69 Guus	Velders	Effect of 2016 Kigali Amendment to the Montreal Protocol on the use and emissions of hydrofluorocarbons (HFCs)
CFCs, HCFCs, and F-Gases				
5-13	5-13_Engel	147 Andreas	Engel	Expanding the European network for F-gases observations and emission verification within the PARIS project
5-14	5-14_Wang	33 Peidong	Wang	Assessing HCFC losses to the ocean from ocean observations and high-resolution ocean model
5-15	5-15_Zou	288 Jiansheng	Zou	Time series analyses for the ACE-FTS and MIPAS CFC-11, CFC-12 data products
In Situ N2O and Trace Gas Balloon Measurements				
5-16	5-16_Catoire	112 Valery	Catoire	Trend and seasonal variability N2O from the mid-troposphere to the mid-stratosphere from airborne and balloon-borne observations during the period 1987–2018
5-17	5-17_Catoire	199 Valery	Catoire	In-situ trace gas balloon-borne measurements from the ground to the stratosphere using Optical Feedback – Cavity Enhanced Absorption Spectroscopy
Other Trace Gases				
5-18	5-18_Liu	328 Yu	Liu	Global and regional CF4 and C2F6 emissions inferred from atmospheric measurements using GEOS-Chem
5-19	5-19_Badawy	253 ayman	Badawy	Variability of total sulfur dioxide and aerosol optical depth over north of Egypt
5-20	5-20_McLinden	133 Chris	McLinden	An evaluation of the consistency between TEMPO, TROPOMI, and OSIRIS stratospheric NO2 vertical column densities
5-21	5-21_Flittner	257 David	Flittner	Stratospheric nitrogen dioxide trends as seen by the Stratospheric Aerosol and Gas Experiment family and friends
5-22	5-22_Pandey	322 Apoorva	Pandey	Evalutaing Pandora formaldehyde columns and near-surface concentrations as inputs for studying tropospheric ozone production regimes

Abstract-Title