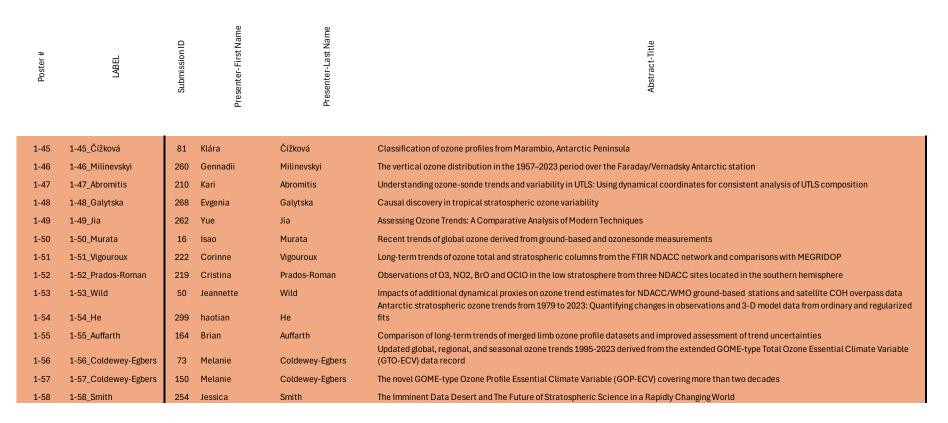
Monday/Tuesday

1. Stratospheric Ozone Science


Modeling and Simulation Studies									
1-01	1-01_Müller	276	Rolf	Müller	The impact of dehydration and initial HCl on HCl null cycles and ozone loss in the Antarctic lower stratosphere in the core of the vortex				
1-02	1-02_Minganti	217	Daniele	Minganti	Optimization of the calculation of the photodissociation rates in the stratosphere in the BASCOE module of the IFS-COMPO				
1-03	1-03_Colarco	201	Peter	Colarco	Simulations of Stratospheric Atmospheric Composition in a Changing Climate with the NASA GEOS CCM				
1-04	1-04_Jones	216	Nicholas	Jones	Trends in stratospheric ozone from a range of measurements and a CTM model compared against a range of know proxies for dynamical affects.				
1-05	1-05_Lait	177	Leslie	Lait	An Examination of Autumn Southern Polar Ozone Tendencies and the Residual Circulation in MERRA-2 Products				
Atmospheric Dynamics and Circulation									
1-06	1-06_Koval	214	Andrey	Koval	Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4				
1-07	1-07_Koval	89	Andrey	Koval	Influence of natural tropical oscillations on meridional circulation and ozone content in the winter polar stratosphere				
1-08	1-08_Langemantz	126	Ulrike	Langemantz	Sensitivity of Stratospheric Ozone to Natural and Anthropogenic Forcings				
1-09	1-09_Li	120	Yajuan	Li	Response of Stratospheric Ozone and Temperature to the 11-year Solar Cycle Signal				
1-10	1-10_Kessenich	103	Hannah	Kessenich	Potential Mesospheric Drivers of the Recent Antarctic Stratospheric Ozone Holes				
1-11	1-11 Godin-Beekmann	315	Sophie	Godin-Beekmann	Assessment of ozone long-term evolution from 35 years of ozone monitoring by multiple instruments at a Northern Mid-Latitude Station				
Wildfire Impacts									
1-12	1-12_Zhang	82	Selena	Zhang	Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations				
1-13	1-13_Guan	90	Jian	Guan	Impacts of Wildfires and Volcanic Events on Stratospheric HCl				
Volcanic Eruptions and Aerosols									
1-14	1-14_Zhou	215	Xin	Zhou	Increasing Age of Stratospheric Air in Late 2023 following the Hunga Tonga-Hunga Ha'apai Eruption				
1-15	1-15_Fleming	209	Eric	Fleming	Stratospheric impacts of the Hunga H2O and aerosol perturbations and QBO				
1-16	1-16_Wang	181	Xinyue	Wang	Long-term temperature impacts of Hunga in the stratosphere and above				
1-17	1-17_Nedoluha	221	Gerald	Nedoluha	The Spread of the Hunga Tonga H2O Plume in the Middle Atmosphere Over the First Two Years Since Eruption				
1-18	1-18_Taha	80	Ghassan	Taha	The Ongoing Journey of the 2022 Hunga Tonga-Hunga Ha'apai Aerosol Plume				
1-19	1-19_Giles	310	David	Giles	Tracking the Hunga Tonga-Hunga Ha'apai Eruption Stratospheric Aerosol and Trace Gas Plumes Using Machine Learning				
1-20	1-20_Leavor	250	Kevin	Leavor	SAGE III/ISS Observations of Seasonally-Adjusted Evolution of Stratospheric Ozone and Related Substances Following Hunga Tonga				
1-21	1-21_Santee	99	Michelle	Santee	Chemical Processing and Ozone Loss in the Southern Hemisphere Stratosphere Following the Eruption of the Hunga Volcano				

1. Stratospheric Ozone Science

Poster #	LABEL	Submission ID	Presenter-First Name	Presenter-Last Name	Abstract-Title			
1-23	1-23_Tully	266	Matt	Tully	Southern Hemisphere mid-latitude ozonesonde observations following the 2022 eruption of Hunga Tonga-Hunga Ha'apai			
1-24	1-24_Heddell	293	Saffron	Heddell	The effects of the January 2022 Hunga Tonga-Hunga Ha'apai eruption on polar stratospheric ozone			
1-25	1-25_smale	55	dan	smale	The impact of the Hunga volcanic eruption on the 2023 Antarctic Ozone Hole as observed from Arrival Heights, Antarctica			
1-26	1-26_Kozubek	17	Michal	Kozubek	Large ozone hole in 2023 and the Hunga Tonga volcanic eruption			
1-27	1-27_Zhu	85	Yunqian	Zhu	Stratospheric aerosol and chemistry evolution inside the volcanic plume shortly after the 2022 Hunga Tonga eruption Recovered measurements of the 1960s stratospheric aerosol layer and interactive model experiments to assess the Agung, Taal and Awu volcanic			
1-28	1-28_Mann	298	Graham	Mann	aerosol clouds			
1-29	1-29_Schill	259	Gregory	Schill	Stratospheric Aerosol Composition during ACCLIP and SABRE			
1-30	1-30_Murphy	300	Daniel	Murphy	Aerosol Chemistry in the Lower Stratosphere			
Stratospheric Aerosol Injection and Geoengineering								
1-31	1-31_Maloney	76	Christopher	Maloney	The potential impact of increased satellite reentry emissions upon Earth's middle atmosphere and ozone			
1-32	1-32_Maloney	261	Christopher	Maloney	The Stratospheric and Ozone Impacts of Projected Increases in Rocket Launches			
1-33	1-33_Revell	182	Laura	Revell	Worldwide Rocket Launch Emissions: Projected Impacts on Stratospheric Ozone			
1-34	1-34_Bednarz	60	Ewa	Bednarz	Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering			
1-35	1-35_Diallo	229	Mohamadou A.	Diallo	Uncertainties and ozone impacts in the stratospheric circulation response to stratospheric aerosol injections			
1-36	1-36_Jörimann	39	Andrin	Jörimann	Ozone in a Stratospheric Aerosol Injection Scenario			
Ozone Trends and Variability								
1-37	1-37_Revell	25	Laura	Revell	Signal-To-Noise Calculations of Emergence and De-Emergence of Stratospheric Ozone Depletion			
1-38	1-38_Novak	185	Gordon	Novak	In-situ constraints on reactive halogen and nitrogen cycling and heterogeneous chemistry in the lower stratosphere			
1-39	1-39_Chrysanthou	45	Andreas	Chrysanthou	The conundrum of the recent variations in stratospheric ozone: An update			
1-40	1-40_Chrysanthou	206	Andreas	Chrysanthou	Revisiting the hemispheric asymmetry in HCl and O3 trends			
1-41	1-41_Rüther	187	Lisa	Rüther	Extensive chemical ozone loss in the Arctic during the winter of 2019/2020: Chlorine partitioning in the World Avoided without the Montreal Protocol resembles conditions typical for Antarctica			
1-42	1-42_Kuttippurath	146	Jayanarayanan	Kuttippurath	Arctic stratospheric ozone trends during the period 1988–2021			
1-43	1-43_Kramarova	114	Natalya	Kramarova	20-year trend analysis of ozone partial columns in the lower Antarctic stratosphere in August-September			
1-44	1-44_Cullis	252	Patrick	Cullis	Antarctic Ozone Hole Updates from South Pole Ozonesondes			

Monday/Tuesday

1. Stratospheric Ozone Science

